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OPTIMUM CONTOUR HEAT REJECTION FINS
; -COOLED BY RADIATION
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G.L.GRODZOVSKY and V.V. FROLOV

. . N N .
OPT IMUM_CONTOQUR_HEAT REJECTION FINS
COOLED BY RADIATION

Part II. In. Ref.I{ Points 1-2) a two - dimensional problem of a
radiating fin of optimum contour was discussed (heaf is asslumed to be
supplied from one side). Initial heat flow Qe femp_erature To,minimum
fin thickness Y min. | |

In was shown‘ in the paper that cross section area ‘ F of an optimum
fin (of minimum v;eigh'l:) can be defined by | ‘

| | F Q)

F = - o " (4.0)
Fopt A N(R ZEZ Tz

lwhere , B )\ ~ coefficient of comductivity

G- Sfefﬁn - Bolfzmann constant

\ : \ B = the emissivity of the fin surfaoe, . .
* : o ) - Fopt
%o initial fin thickness Yo hE

: ' /
is defined by the ratio of ‘J min

F—‘—- = 1,0 with —21@39# = 0
opt . \j/ o
Let us consider an optimum combination of /radiating fins and a |
, : S
tube with inner héating, for wall temperature T  and tube geometry

prescribed. - . !

{D-~- diameter of the tube, . O - wall thickness). b

‘Gzoaoysly 0.y - Tpgtor of Eaysloal luthenstiosl Setenoes. |-
1o A a , AS. A ¢ ’
Frolov V.V, - Engineer " tgj?/m'qa 4, Moskow 2/9 ,

B N e _ ~
o7 :

N
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Consider a oombination of a tube.and two fins, arrenged on both
sides of the tube in the same plane. |

Mutual irradiation of the tube and fins is negleoted in the first
approximation. Then total amount of heat, rejeoted per unit length is

-_%.2.‘- - 2q + (D +d) o‘_aw‘;‘ T )

Unit weight of the tube with fins is equal to
F
3
de_ . w(ni®)?2-xp?, ., 2 Fpt - %
- = . 2 (4.2)
g2 ‘ Y Y‘ )0‘232 T9 X

where X1 - tube material specific weight
XZ - f£in material specific weight

From'4.1' and 4.2 the-speéiff.j.o welight of the tube with fins - -%g—-

is

3
de + BQo '
" essaed 4.3
o ey (4.3)
9. F | |
‘where A= i ~~5 Y.1 ! )0-232@9 XZ
‘C = ‘“’LDL;B )] (TIB_T“
. . o .
Minimum specific ~weigirt of the ocqmbination is obfa_.ined
ﬁhen ‘ ) . L .
‘ Qz - A ' .
0. B(ZQO? 3(_;)
or L 1 -
‘ < _X)Xa '57 "5
‘where x=2_% ' . | L Ty ’
* 3T ‘ . . (4e4)
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B ‘
then minimum specific weight ;s N
. de . alc | ‘ ' '
. ("ELE-) min f"TéX'_- . (4.5)

i.e. in- .Ttx—- timea less than that of a tube without fins.'

Values of -7;}- are presented (Fig.1) for D = 10 mm,

/

§=0.25 2075 T = 1200°K, B = 0.9 (the tube made of steel,

| fins - of steel, copper and bgrillium for "F"; s 1. 205,
op

an optimum contour with —==== <~ = 0.31 (see 2).

If the optimum fins disoussed are replaced ﬁy those of optimum reo-
tangular oross section for- F = 1.635 / (see gbove) ’ |
opt
their specifio'weight is increased by;ﬁ'ﬁﬁ 6F13.1).
| .. 5. From formula/h.OVcross section area F of an optimum fin and
its weight‘are proportional-{B the cube of heat flow Q° radiated by ]
the fin, - | S L.
Using "n" radiating fins to remove heat flow Qe.

(mutual irradiation is neglected) total cross—-section area °
(and their weight too) will .decrease inversely proportionate with

respeoct to h2

;Fs' nF ~'—i-2 with Qg = @Q, = const - (5.0)

Radiating fins can be arrhhged so as to form a starwise contour at
the apex of a polyhedron, cooled by radiation.(Fig.z)

liere for n > 2 mutual- irradiation of fins is of 1mportance.
It being taken into account, ‘an optimum number of *a" fins and the

corresponding optimum fin cross section oontour are determined...

A
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Consider a two-dimensional problem of defining an optimized fin
contour used to remove heat from a polyhedral prism (mutual irradiation
of its edges and surfaoe§ is taken into oconsideration).(2). |

We analyze th1n~f1ns‘ of shallow c‘ontour, for whioh thermal radia-

tion law and the equation of heat transfer are true in the form of

3= QX)=- )\y(x)-é-'ﬁf; --3dQ= qa (ds  £5.1) ,(5.2)
where dS - an element of length of ihe fin side surface

Qpes (X)dS - the difference between heat flow absorbed by
all surfaces "seen" from dS, and that absorbed by ds.

(the surrounding medium has purameters E =1, T =0).

The difference characteriges the amount of heat, radiated by the
element dS (mutual irradiation of adjacent fins is taken into oonsi-
deration). . |

As thin fins are discussed in this case, for determination of .
Qpes  surfaces dS can be considered ly:l.ng along the fin axis (Fig.3).

For simplying the analysis let us take the oase £21 for all
surfaces. ln the problem Qpa(x)1s expressed as follows (3) (with E=z4
the reflected heat flow is absent):

. ‘(‘) ..
Oppes 2}z T (2 B ("‘)'T'(ac) - {T(Q &.%w@ S/'r +cr'___‘£_)*‘r"
Angles @ (X), cy o(x)‘, %(x) . are illustrated in Fig.3.

I{avihg expressed t? " t.?o, c% ‘through X and ‘? rewrite eq.

/5.3/
B 4 \
. 2
o b (x)- 7 xm S b X% Sin®x dz ],
';" "%“—[ S217(X) ‘( ) ) ('i) (x2+22-2X§C09ﬁ/2'
/ where . X=X, Cosy

F, (X)a1es ,
( ).. (x2~~x2 - =X COSX)172
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Y= -%RT-':— - angle between adjacent fins formulate a variational
problem: to find 'a fin cross. section of minimum area F (i.e. of minimum
weight) for a polyhedral prism geometry, its surface temperature and
net radiant heat :tlux A4 prescribed. L
l‘his is a problem of minimizing the functional

x,

‘ F=on S y(xjax' ’ (5.5)
’ x"’ . .
under oonditions
|3 A=Ag0 - | (5.1)

XL, '

| : ” -
-®-- 6 [ 2 40~ Fe(x)T¥ - S 4(3) (x}éi;éfa;? 2;@3/4(5.2)
. : To )

W= R(Q, + q,) ' ' | | (5.6,
where q - ‘result‘ing radiation from a side of the prism (_its
irradiation by fins being taken into account).

L Todlgla, o
q/[ﬁ (TST X i;ﬁ;', -T (Y)Cov%dv +T {Su«ﬂl (z)~ Su\‘t’z(?)} 5.7
° v(z | , |
+ “T'a Tw) Qos\%v\q]dz o
%(z) , i _

y and - 1llustrated (Fig.4).

N

Integrating 5.2 and using 5.1 and 5.6, it becomes possidble to
express the funotional Se 5 as follows.
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B(x). 3{ f S embe- phOTdaX -

x

where

- s:.n% Sm“(;) (S X% 3 2 21}20859/2)26% ’(%r.l%)}
9

It ié expedient to 1ntroduoe dimonsionless‘variables

" where
L * W % x*w = W
w:—-—.—-— x = C—— M 3 = - 0 = , - -~
g 2 _mz ’ 2xT, ' BAG2 mf

In terms8 of new variable the functional takea the form

X T, .
e 2 : =2 B(X) dx ey
F = -  §dXKm— S84 XL 5.9
- ‘nzj B f,y x nz S v (3.9

*Xo

and / |
| x o S T -
B(X)=1/2 & [ 22*@-2 @] 5 5 ¥ (3) 6(X,3 a3 ~(1-3,)
| I S s J | ,

- -‘ioi‘c;sx 3-XcosY
(if + :é /,-Zio'-f‘ Coszg)va -C—xz+ .?2-_ 22-_% Cos | )?72

v

s(ic‘,zg‘ ) =

Thus the problem set here, 1s reduced to that of finding thé function

\

T(X), giving minimum to the functional 3.9.
Unknown function m(x) must satisfy the tollowing ‘boundary con-

ditions: m(x J=1; w(x )-m

N
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-

'1f T fin tips temperature 1s presoribed and Bﬁzzl. (5.40) °
] x -

~1f the right-hand boundary oondition is natural.
Besides, if fin width X - x is not presoribed, the optimum value
of X, ,muat satisfy the’ oondition. ' '

(5.11)

~

The condition 1s equivalent to that of 510, and it is generally -
‘characteristic of functionals having the form

1 '," 'SF(y,x) dx
: ' G
61

This.variational problem dan be solved by the functional method

of steepest descent

Note that

4 :
2x @I ;

x T s e sl e s = 0

W . sinmY¥/2 W

where W - heat flux, radiated by one side of a prism, having no
fins. - ! :

Ratio _W,_ - gives the éortion“of heht f£lux, radiated by a prism
without fins with respect to that, radiated by & prism with fins.

When io' is sufficiently small, the values of W/

| - . o
and &o are also small. "ff7\‘ < ' 4 '
‘ ‘When i'—> 03 EOZA. 1 (expression for B(x))the solution gives
mutual 1rradiation of fins themselves. ,
Numerical examples . for. . T,=0 are presented (Fig.5)
{
N
o . o R
o ~ ' : o/
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=8

he ratio of total cross section area of " n" f£ins to that of a
single fin (n = 1) for thec same heat parameter (W;To,.k ) is
presented in Fig.6. '

. &‘ .
. T yag; F -8
F " 4 n? S Lot o

1 opt o Lo

Solid line in Fig.6 shows the optimum solution (see Fig.5) the dash
lines correspond fo the results, obtained in work (6) for optimum
rectangular fins of starwise arrangement.

Dash. - dotted line (Fig.6) corresponds to the correlation.(5.0)
(mutual irradiation of fins is not taken into account).

We see (Fig.6) that mutual irradiation of fins being taken into
account, the least area is that of four optimum fins ( n =4). The
area of the system, consisting of mém optimum rectangulur fins 1s in

~1.5 times more than that of optimum fins.

\

¢
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| ON THE MOTION OF A BODY OF VARIABLE

| MASS WITH CONSTANT AND DECREASING
~ POWER CONSUMPTION IN A GRAVITATIONAL FIELD
l Part Il 1
. |
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ON THE MOTION OF A BODY OF VARIABLE MASS WITH CONSTANT AND DECREASING
- POWER CONSUMPTION IN A GRAVITATIONAL FIELD

Y

Part II x)

by GRODZOVSKY G.L., IVANOV Y.N. and' TOKAREV V.V. xx)

b

6. In sections 1-5 (_see part 1/1) the general case of jet propul-

| sion optimization of A f:ody of variable mass in a gravitational fileld

with constant po\ver con.umption N=const and multistage power deorease

with a corresponding proportional weight deorease of the power source
GN= oLN; o = const was considered. ~ ’

By generalizing the problem given in seoction 1 we state the follow-

’ .
\

‘4ing variational problem /2/

Let us assume, that the relative useful weight 1s presorided C.. §-":
=:L-§,,,'-§... N where G’,r é-" and G’m G"° (G‘,,G,,,injtial welights of
! 0
power source and e jeoted masa,respeotively, Go -initial weizht of

'body of variable mass), it 1is required to determines-

1) the optimum law of power decrease N with the oorresponding

A

decrease in the power source weight, GN= dN _and

2) the law of the. adoelération veotor variation due to. the jet
thrust &; these laws must provide the minimum time of the
displacement 'b'e;hv‘zeeﬁn two presoribec’i vpoiz;ts with given velo=
cities. e ' “ RN o

)bee Part I, bections 1-5 (The report at the XII-th Congrass of
I.A. F.,Wash:l.ngton, ootober, 1961)

-~

xx)Grodzovsxy 6. L. - Dodtor of Physical-Mathematical Scienoes. )
~ Ivenov J.N, -Kandidat of Physical—Mathematioal Scienoea. ‘
Tokarev V.V, - Engineer e

1
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N
'

w2 _ B

\

This problem 1s deacribed“fbythe‘ set of differential equations.

- = = \2 S
(GM+GN+GH) 2kl
) . Eg

Q)
=
]
L]

/' ., .".~' . ‘, l“. N .
- - =V - (1) .

V;z»;fi(r,t) S

and by boundary conditions.:‘
" initial position (? ¥ ), final position (rkyk)

In this paper as well as‘ih part 1
- G

s Bl a4 =G =Gy 4
6p= Go " 1= Gpo GNo' is relative useful

weight; EN and EM - instantaneous values of the relative weight
- of the power source and that of the reservé of the ejeoted mass;
;,V - radius—véqtor and velocity vector of the point;
ﬁ-(¥,t) - acceleration vector due to gravitutional forces;
the vaiues are differentiated with respect to time.

To solve that pioblem according to Pontrjagsn s prinoiple (3),

let us write down llamilton function H

(GM+GN+Gn)
G (%

' H=~P a? ‘g‘g/;?i - ?v.-(am )+Py (2)

Function H(GN,Qpan reach its upper limit with

Gy = -{GM+Gn \ o )
< "\, const : : o

|

For given functional relations GN(GM) the variational problem
. can be divided 1nto two independant variational prohlems. o .
a) With the prescribed relative total‘initial weight of the
power - source and that of the reserve of the gjeoted mass we deter-
mine the law of deoreasing fhe power source Weigpt;tbia law consists

of extremals /3/ ana provides the maximum value of

‘ .

Declassified in Part - Sanitized Copy Approved for Release 2011/12/13 : CIA-RDP80T00246A01 8_600220001.-1



. . . . \
Declassified in Part - Sanitized Copy Approved for Release 2011/12/13 : CIA-RDP80T00246A018600220001-1
=3

CP. ) S G}"dEM T B W

By, (GM+GN+G ye'

') With the prescribad’iivntegral funotional  we determine the
minipum time of motion T petwéen two presoribed poi;ts with given
velocities -'this part of the proﬁlem 18 ‘connected with two last
equations in the set. éf‘equations /A} and corresponds (as well as

"with N=const) to the minimum of integral CPa -2%"--- 3 al at
‘ ) .

if we consider the variatfafal problem with the prescribed time T. . '
 We consider the first problem (a):

It is necessary to determine a plecewise continuous funotion

“GN(GM)’ consisting of the pieces GN“GM n a.nd Guaoonst

. . G d GM
which provides maximum - $ - (-----_..-) -
' Gy +Gy+G
. M N '

with a given value of G and with the following aaditional oondition:

| Gyt Oy * f}n = 1 , - (5)
It should be noted, that with Gy» 0.5 the extremal Gy(5)) cannot

'involve the direct line "EM"EN’ for in that case condition (5) has

G,
/ - no. sense. Hence, with G n>/ 0.5. the optimum law EN(EM)-EN'OQobnst.
\ ' - '

If En < 0.5, the extremal consists of two di:eot lines:
‘c‘;ﬁNso.25 3 0.75-G, % :Euzv.o;zs-an R L . - (6)
Cy=OytBpi '0.,25{§n 282 o' 2

This ‘solution is valid in the rangs of 0.253 G, O,

and in the remainder of the range G, 213857 0.25 | the extremals |
are direct lines EN-oopét. | C ‘

‘ “ S . " ) A

/
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~ The firal results #qme tmct;c;nal ;nd. the optix;mm_ law
€ g m R o
CP' 0.25(1+f.nué;-) ; ._ with 0.25 > 0,2 \o‘
(1-v3%  with 1 > 5, 0.25 N¢H)

C— 0.25 with O. 75 = 32 Gy 0.25 -G, ou+o with 0,25 =G> 6,30
i i’

J—;'Gn : ' Gﬂ

/

This optimum relation 1-8, ( P )

" when applying thé optimum law of power deorease is oomparcd in Fig.1
with relation 1-6 () for N - oconst and for multistage decrease of
N (nsa), see Fig.1. : \

7. Ve consider the dffaot of random processes of power deorease
on optimum oharaoteristioa of the motion of a body of variable mass
in 'a gravitational field. : !

Under the effect of random factors some elements of the power
souroe can fail at time tJ.' We state that these elements or the whole
power souroce oonaista,of some independent sections (n - seotions)

4vwhioh can b%e out off when tailed- | |
in a general oase ‘this leaﬂs to power deorease BJ-BJ o
(06 B, <1y By> 3By ., B |
The motion between two instants of time 'tJ and $,,, takes place

with constant power consumption, therefore using equat;ona from sec-
tion 1 one obtains th65follow1ng expression for the body weight Gk '
at the end of motion taty with the constant weight of power source

- ‘/ . ’ ..
GN-d'No‘ . '

6, /G = 1+‘Gd é - ‘ 2 -1 ‘ (9)'
i/ % *NE o0 FT et

‘ ; ‘ .\ . » 3 . t‘ __‘ . i .
where’ ¢

‘a - acceleration due to jet thrust
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ns-
g - Earth's gravitational acoelera‘tion s
1<<n - number of the instants of time when failures take
_ plaoo (it is denoted that t~.(+1 = tk)

On the base of the probability characteristiocs of the processes lead-
ing to the failure of power source seotions i1t is possible to determine
the avera’ged values of time t j<;> and to introduoe an averaged expression‘

for the functional similar to <P in section 1.

. - *—ifi .
¢ = —-2‘*--— > 1 3 azdt (10)
2 j=0 E
5y 1 |

Now, as well as in section 1, we’can state the following problem:
) . . .

Let us choose the optimum&alue of all parametez"s which influence the

specific weilght of power so_urce
o -
A = d(xjn)(i=1,.....,b) and the avera.ged values of tJ-tJ( Xy 58,‘.2') _
J-1,,..C<}n>, and also choose such a law 2 (%) and the
l=1,aoo,d ] o »
. initial instant of time %, whioh 'provide the minimum value of the
averaged magnitude (I)xxx) . when moving between two prescribed points ‘

with given velocities

(?o,« Vo) and (i’k, Vk) for the presoribed time T.

‘Let us consider fwo kinds of random precesses of failure of power
source sections: ' ‘
-a) processes due fO'heterogeneous external oonditions,-
b) internal processes or processes due to homogeneous external B N
oonditions. Failure probability Py of one section for an instant of
time will be written .as ' '

x) In this case the probabuity of simultaneous !ailures of several
sections is negleoted. . 1‘

xx) _Restrictions can be imposed on parameters x™ and" x .

xxx) Further we shall oonsider only averaged values.

\
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y ‘ . -
"'“‘“‘0) Phj P.,'\J: xt IR § ®). 9(1'91")
® Po=p (n,x ’ x) ?,(t) C ‘

"l‘hese probabilities determine the 1n‘stants,of time ¢, during which
power source sections fail. i { |

When moving 1n a gravitational field /in inertial Cartesian sya‘tem o B
of coordinates (r ’ r2, ‘r3)/1t is necessary for minimum@tp have .a
traJeotory, consisting of funotional extremals '

2) L -ET rvaxr’+RV)2 + Js] p(Z,%) ] dt, where )s;‘-‘const,

4 +.3‘ "]H
D J, = g 3 vy2
) vy EJ | L(rm) at
ti V=4

that 1s the Euler e@uat‘ions should be valid along the trajectory.
- . ’ ‘ : '
4 " v QR o) '
8) a = - 2—! a8 === ' —}'“ /Jﬂo .o--.‘( .y A«‘- O/
'b-I "brI o ! . :’
' (11)
a'-gd /1=1,2,3/.
- Yo 1 rl; & e
' We oan see from equation (11) that even with .. r; = i' =0
_ and without the gradient.dt all compgpents of gravitational foiges along
i-th coordinate

(_____1_"; 0 )‘ but with fu.nct:l.o’n. dependence Q .
/’39- - = 0/ on this ooordinate displacement yill take place along the
’Or

i
coordinate (r #ro).

Upon equating the sum of first variations of :funotionala to gzero the
following conditions for_'fE and & during the instants of iime %y
" result: - - o L o '
1. _ . S TP
By O% OB a0 E M TR N b (12)
where | ‘ o L
. J = 1im a(t+d ), &) = lin a(ts -8,); %0 N
Y20 Co%emo LT

V-1,2,3l;_> 3-1’00;,-« ; . ' ; l. \' }. .

. 1
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. -1~
‘that is, wlien any seotion of power source fails the acceleration modulus
due to jet thrust and the modulus of acoceleration derivative in respeoct
to time must have a disoontinuity, these values being decreaaed by R
EJ/E times when passing the discontinui‘by.

From the above oonditiog we ob'gain th g llowing re%atzions. g
Ao + 3 [2230‘1*-(0.,‘) +2R00]= 4 E‘ z, z'z o -(a L+2R a]

a) V=i
)\ Eii—E; S -
oo Nt Y 4 =0} 1,14 - (13)
96( J EA-L> EA 3:"1 /(‘ / |

b)z_. {E "d:‘-(a;)"»f'ZR‘,:o‘.{‘] [ 2,2Y6 w—-(CXW) +2.R ]
T e 1)y f=o

After solving equations (41) 4in conjunction with conditions (12) a.nd
'(13) we choose optimum values of parameters xi and. U according to
the minimum of function CP

With large values of n the limit case of ocontinuously decreasing
i pbwer ar' = -pn_ N is Valid for this case the solut:l.on is greatly
simplified.

:As an example reiations.

. ¢ @ 6 (1‘ - ) i R -
. -----3—--—- : against p = p, T

for one—dimensional motion in a forcéless field with vbavk-o are

‘represented in Fig.2; theee relations are obtained on the base of exact . <
solutions for the case oi’ finite number of seotiona aand. of continuously
deoreasing ‘power ( n —» co ) ' .
For oompa.rison curves are. plotted in- Fig.z (See dash " lines), these | |
curves represent the motion in presence of failures according to the
linear 1aw a (t)(dash line in Fig.J) which was optimum in case when,
failures are absent (see section h)
An example ‘of relation a (t) which is extremal with ‘acoount for f..a\ilures
| is given in Fig.2 (full line)
"8, Im seotions1-7 the problems of jet propuloibn optimization of

a body of variable ’mass.were investigated from the point of view of . v
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8-
nonrelativistio mechanicse It is the ejection velooity of the propel-
lant V that acquires L the relativistio levei. let us consider
the effect of this phenomenon on the choice of optimum parameters of
the motion of a body of varisble mass with N=oconst. | ‘

In this case motion and energy equations are
‘ {

Pzmaos = ==wre- v ‘Z’“ 14
’ 3T (VG2 2 (14)
co ‘ Lo 2 v$a2
e (g - e B )
B 1- N
C

As an example we consider the simplest case of motlon with constent
thrust P for a given time p( from the point of view of nonrelativis-
tic mechanics this problem was considered in reference (5). In this

case the total weight of the required reserve of the ejected mass

=‘-sSd‘"‘ R

and that of the power souree GN-dJ(

(for the given specific weight ol ) are.2 . : ,
1~1="/c? |
GyrOy=FT ('5" 1"v/ 2+ F—-V VE o (18)
. With the prescribed initial weight G the maximum of the useful
‘weight G,=C —(GM+GN) corresponds to the minimum (GM+GN) and to some
optimum value V ‘according to ‘eguation (16). '
Equation (16) can be wxitten in an approximate way ass

GOy ¥ PT[ e (1— 2 )+ -EE- v (1°_E_ -2 i] _ (17)

whence the optimum value is approximately

@&

V oy S e ~ o (18)
opt = T 3. _T 7% y2/ce
' 1fa- G 1- g Vi/¢* . |
and Gy/Gy - - Y& | (19)
Hence, the <. L errects increase the optimum value of the

ejection velocity of the propellunt V and the relation GN/GN
We note that with the values T/4 of the order 4 year-Kg/kw. the ,

relativistic correotion-to the unity in the denominator of equation(18)*‘
-6 Co . :
is w» 10 °° : : ‘

. o . -7 \
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| S o ~ N.N. MOISEYEV
i ! ' '

METHODS OF NON-LINEAR MECHANICS
IN THE PROBLEMS OF THE DYNAMICS OF SATELLITES

In the dynamics of satellites and artificial celestial bodies
there exist a number of problems which can be described by the
following systems:

x'= eX(x, Yy t);

: (D
y'= Yo (x) Y t) + eY(x, Y t)-

Here x is n—dimensional vector, y — m-dimensional vector
and ¢ is the smaller parameter,
' In the system (1) some variables change slowly (vector x)
! and the others rapidly, a circumstance which hampers its nume—~
' rical integration to say nothing of qualitative analysis of its
solutions. ’

The investigation of the system(1) has many common features
with the investigation of systems with a fast—revolving phase
which was studied for systems with one degree of freedom by
N. N. Bogolyubov and D.N. Zubarev [1]. The basic idea under—
lying their research was to find such transformation as would
separate fast and slow motions. In recent years Soviet scien—
tists have made certain progress in developing effective methods
for the investigation of various non-linear problems of the ;

] type (1). The investigations V.M.Volosov, G.E.Kuzmak and
} F.L.Chernousko have been especially fruitful, Some favourable
; results have been also obtained by the present author. This
research provided a deeper insight into the nature of solutions
of type (1) systems and -brought to the fore a number of ideas
which made it possible to simplify in many cases the study of
these systems,

Pk < i B ki s i e Mt L

-]
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In this paper I intend to show several examples of problems
‘pertaining to the dynamics of satellites, which can be reduced
to the type (1) system and indicate the ways towards their
investigation by asymptotic methods, The main attention will
be focussed of the search for such changes of variables which
will permit writing the equations in the form convenient for nu~
merical integration.

Inasmuch as the main purpose of this paper is to demonstrate
the possibility of asymptotic methods we shall consider only the
simplest plane problems although our methods can be also
employed for analysis of three dimensional problems without
any essential changes.

I. The Problem of the Perturbation of Satellite Orbits |

If the orbit of a satellite is considerably removed from the
Earth the satellite motion may sometimes be studied within the
| framework of the perturbation theory since the motion in this
case approaches the Keplerian motion. This signifies that the
field of the acting forces is closed to the central field and is
i distorted only by negligible additional magnitudes: the addends’
! : which characterise the non~central nature of the Earth’s field,
| small airforces, etc, A satellite in such conditions is in for a
: long journey. amounting to tens and hundreds of turns. The above
3, causes will impart secular perturbations to the parameters of the
i orbit and it is only natural that we are faced with the task of
; studying the gradual change in the orbital elements from turn to

turn on the assumption that the satellite is a particle. This
i problem was the subject of numerous investigations on an inter—
| national scale. We shall indicate here one more approach to this
1, problem employing the methods of non—linear mechanics.
| Plane motion of a satellite can be described by the follo—
wing system of differential equations '

d’u Jf'___s{ﬁ.ii.“’_.y_{;__

dg? K wh  wk

(1.1)

-2
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where ¢ is polar angle; u =¥, r-satellite radius vector; h—areal

: do .
velocity; h=r 2d_9' f, and fy—projections of the perturbing force

|
|
i
on the radius—vector and transversal. These values are assumed ;
to be arbxtrary functions 7, ¢, %’- and h.
@

N At € =0 we can integrate the system (1.1) explicitly

U= h,+caoscp, h = const.

P Let us introduce the new variables (¢ and y) by means of the
equations:

u=v-}§'§-+0cosw; iﬂ(p:—cain\y.
Then the system (1.1) will be reduced to the followmg system
equivalent to it. v
..f,c:sin\yﬁs  f, A ) :
+ }siny +
(p+ch®cosy) (p+ hccosy) Y

2uef,
—cosy = F (¢, b ;
(pd—h’Ccos \y)’lh v l( i \V), ]

¢’ = ¢f

e 85t =F,(c,hy)
(p.+hccosw) 2\ T VI3 > (L2) ]
f . hl 2 !
v _1+§.{ Ceiny + ;f‘h - Jcosy+
(p+h? Ccos\y) (p+h Ccosw)
2uef, _
+ he s - siny EFa(c, By ¥

clp+h®c cosy) )

The system (1.2) is a system of three equations with respect

to the three variables ¢, h and vy, the first two changing slowly

and the third rapidly, Forthis reason and basing ourselves on the

Bogolyubov—~Zubarev idea, we shall look for such transformations

which would allow us to separate slow motions from fast motions.
That is, we assume that

-3
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c=a+ e‘gl(a,b,x)'*'ooo'
‘ h = b + sﬂl(a, b, X)+ oo ) > (1.3)
.W=x+ e;l(a’b,x)+‘¢- ) E

)
i
\
{
!

L N

and require that the a, b and X functions satisfy the equations

i

a
!

ed (g, D) +ed,(g, )+ | ]
eB,(a, b)+ e28,(q, b) + eee } (1.4)
x, = 1+ eDl(a, b)+ ees

i

J
Substituting the series (1.3) and (1.4) and comparing the coef—
ficients at the same powers of ¢ and employing only the require—
ment of the limitedness of the £;, n; and g ; functions we can
arrive at any approximations. If we confine ourselves to the

~ first approximation and use the periodicity of the F; functions
with respect to y we shall obtain the following system of equa—
tions SR {

3

it e Bt 0 e el 8

c=a; h=b; y=x;

2n '

’a,:-:ig' fF (a0, y)dy;

i ‘no ‘

| . | > (L5)
_ b'= & [F,(ab y)dy;

. "“0

_ 2T
x'=1+ & fFa(c,h,v/)d\p.
21:0

It will be readily noticed that the first two equations can be
integrated independently of the third.

~ume special cases should be pointed out.

a) Let the structure of the function f; be such that the quad—
ratures in the right. sides of the system (1.5) are taken expli~
citly. In this case all is rather simple; the first two equations
are very convenient for numerical integration. The third equation
is reduced to quadrature. Since the first two equations are redu— 1

-4 - ‘
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ced to one first—order equation we can extensively employ the ' :
' 'methods of qualitative analysis. ﬁ
b) Of certain interest are the cases where no quadratures are . '
taken but the problem.contains a parameter independent of ¢
(let, for instance, the initial eccentricity be very small), This
makes it possible to use various methods of .approximate inves—
tigations. N
A number of examples pertaining to these cases are examined
by Lass and Lorell [2]. .
; c) This approach remains valid also in the general case
; because when the value of ¢ is sufficiently small the integration
i step with respect to t appears very large, at any rate larger than
one turn. This means that in constructing a finite~difference
scheme we shall have to calculate the quadratures assuming
all the variables, except vy, to be constant. These considerations
enable us to develop various methods of numerical integration
analogous or identical to the well—know method of double—cycle
integration suggested by G.P. Taratynova [3].

The change of variables(1.3) allowed us to separate fast mo—
tions from slow motions and perform integration with alarger step
with respect to t. However, to attain this we had to calculate
additional quadratures in. the right sides of the system (1.5).
If e is sufficiently small this complication is compensated for by
the amount of the integration step.

If € is not very small or the accuracy requirements are such

_that the integration step should be smaller than one turn, the
suggested method of solution will no longer be economically
feasible and in some cases not applicable at all. For instance,
this method can hardly be used to calculate the several last
turns of the satellite when the perigee is low and the airodynamic
forces are considerable.

{ 1L, Problem of Sé‘iellite Travel on Last Tumns

i : When the height of the perigee grows small the airodynamic

force becomes one of the determining factors. In this case we can
- neglect the perturbations due to the non—central nature of the
. -5 .

i

et st e n
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Earth’s field, However, another important factor comes to the 5
force. If the satellite is not stabilised by some special method ;
it revolves round the centre of inertia and as it can be of any i
arbitrary form (for example, the form of dumb~bells) the magni—
tude of the airodynamic force will essentially depend on the
motion of the satellite with respect to the centre of mass. There—
fore, in case of low orbits we can no longer separate the motion
of the centre of mass from the relative motion.

We shall describe the satellite travel by the following system
of differential equations

\

f dv _ B . p(n)v? _ ‘.

| bl - asinvt ———sc, (v,n0)=7(,v,na) : L
dv = (v = , -

| ﬁ—(;—;%)coso =1, v, r);

i‘ 'd—r"‘vSinU Ef(v U)‘ ' (21)

% dt - ) 3 » ? > .

3 dp _ vy

; o = 7 eosv = £, (v, v);

g 42

’ Fg'}"fs(l}: U:’}'O’-?)IEO. J

i

| Here p'is atmospheric density, s—characteristic parameter,
Cx — dimensionless coefficient, m — mass of the satellite,
U — velocity of its centre of mass, v — angle between the direc—
tion of velocity and the local horizon, « - angle of incidence,
angle between the velocity vector and a certain direction rigidly L
connected with the satellite, The function I is the aerodynamic
moment, If the satellite possesses an | axial symmetry, s will
be the odd function of the variable «.

Let us investigate a case of a revolving satellite. We assume
that

da _ |
dt—w'f'z. |

Let us consider the interesting and important case when w is
large. This means that the period T = 2“-'1)‘ is small as compared

e S et s b
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to the characteristic time scale of the change of the other pa—
rameters, - ‘ '
We assume {5 = ¢ and introduce the new independent variable

T=wt.

Then the systém of equations (2.1) will be reduced to the follo—
wing form: ' ' ‘

w2 =ohi fr=ery $zer; |
o (2.2)

The system of equations (2.2) is analogous to the system
(L.2). It.will be natural therefore to change the variables used in

the preceding section:

vV=u+t e‘vl(u, &R, L,B) + e
v=6+ eul(ulelRl C, p) + e
r= R+v9r1 (u, o, R, C)B) t oo q (2.3)

Z=Ctez,(1, 6, 8,0, 8) + .
= g+ S,Q‘l(u} 0,R,C, B) t e

where u,6,R, { and B satisfy the equations

’

u =ed;,(v,0,R,5)+e24,, +..

1 _ 2 .
e = G.A21+e A22+.ao 4
R' = eA31+ezA32+... , g (2.4)

P = 2
_; 4 edyy +eld,, +..

J

w

=1+ 6B+ ..

If we confine 6use1ves to'the first approximation we shall

come to the following system:
o - 7 -
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LN

dv . 27

—;:-z—ﬂérflda,

do_or. 9T opis

dm—?—fz. dx =efy} L‘

o (2.5)

d 2n

az _ _ &

cdw 2n6ff5d“' "

do j
=1+ Z; — = . i

de e el 1 f

The integral in the first equation of this system is not equal
to zero

—l-offldaz —;sinu+ it scx(v,r) fl
; - .6x=-l1-t 6[ cx(v,na)da.

i v Therefore, to a first approximation it is sufficient to replace
i in the system of equations (2.1) the coefficient ¢, by its mean
value with respect to the angle of incidence. It follows from this
that our problem is reduced to the integration of the following
equations:

_t'zfz _"'f3'

8
]
-
-
—
o

The other equations are integrated in this case in quadra—
tures.

Due to the decreasing of the velocity the height of the oscu~
lating perigee will all the time be decreasing and the satellite
} will pass through more denser atmospheric layers, The lift force
! : will become considerable as well as the air friction. The last
circumstance will decrease the angular velocity of rotation and
the parameter e will cease to be small. The further descent
of the spaceship will entail cessation of the rotary motion and
the transition to the phase of the oscillatory motion. The quite
different theory is needed for its description, ,

-8 - i
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111, Problem of Satellite Travel at the
End of the Last Tum

Assume that satellite is a symmetrical body with a large

reserve of static stability. This assumption is very important.

It will underlie the construction of the methods of asymptotic

i integration. Let us assume that the satellite travel over the last

| " portion is described by the following system of differential
i ~ equations: o
1. The equations of momentum

dv _ : pv? -
4 (301)
de . 0 pY - -
g‘t"-: -8 'c"(%—' +§;‘i'scy = fz(v:e)y)a)-
- 2. Kinematic relations ,
d | ]
x =
o SUcose = f3(v,0
_ > (3.2
E% = vsine =7,(v,0).
_ J
3. The equations of moments
d'a ,d’e , PV’ Vo PY oo oda 4 d ) =
2x 4204 sm (V) —sim (22 +2=2) =0, .
dt? dt* 21 2(Vs ) oI z(dt dt ) 3.3
For simplicity we assume in this problem that the gravita—

tional field is homogeneous (rejection of this assumption will
not change our way of consideration. ¢ is the gravity accelera—
tion; o--angle between the velocity vector and the X axis pointed
along the horizon, the ¥ axis will be directed vertically up;
; ¢y = ¢y(v, Y, «) — dimensionless coefficient of the lift force;
{ m 5= m4(v, Y, ) — dimensionless coefficient of the aercdynamic
moment m& = my(v, ) — multiplier at the value of the angular
velocity in the dimensionless coefficient of the damping moment
(the damping moment is naturally regarded as a linear function of
-0 -
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the angular velocity); I — moment of inertia, I~ length factor, .

The other designations are the same as in the preceding sections,
Let us use the equation (3.1) to eliminate the derivatives

2 .
g% and -gt—? from the equation (3.3). We shall obtain the follo—

wing equation

oy vt s g

2 ., ; ;
a4 re(v, 010+ f632 = 0. |

Q

t

High frequence oscillation is one of the important features of the
" motion of a statically stable body on the last portion of the path.
It means that during one oscillation the other parameters of the
system will change negligibly.
We assume that

Fs= T

where A is a large parameter, We now replace the independent
variable

t= %:e’r.

PRSI

Then the system~(_3.'1‘ - 3.3) will take the following form:

dv _ . de _ . dx _ ,ody _ . '
d_'_r.—efl"' d—;—efz’ (_i;—efa' a‘%"‘ef4; o
| }(3.4)

d? d
T2 trs(ey 0t efs(v,6,p) 5% 0.

When =0 the system (3.4) will appear as:

o + fs (v,0,1, «) ?0 U = const, -6 = const, } =const. (3.5)

We shall assume that the solution of the systeém (3.5) is known

Q(C, WU 8, 11)
w(c)('r + 1:0).

o

(3.6)

v

Since the equation (3.5) describes the oscillation the func— ’
tion ¢ will be the periodic function of the variable v. Denote
10—

Declassified in Part - Sanitized Copy Approved for Release 2011/12/13 : CIA-RDP80T00246A018600220001-1



Declassified in P'art - Sanitized Copy Approved for Release 2011/12/13 : CIA-RDP80T00246A018600220001-1

the period by T (without breaking community T = 2x). Various i
methods can be used for the practical calculation of the func— ,
tion (3.6). Thus, for example, if the angle of incidence is small - §
the function ¢ can be found by the methods of the quasilinear f
theory. 'If o is large various approximations can be employed
which in combination with the methods of the small parameter
or averaging operation will allow us to calculate the function
g to a sufficient accuracy. Let us determine the derivative a'
_through the equation }

“’ = mqwo . - (3.7)

,_ The equations (3.6) and (3.7) determine the new derivatives
f ¢ and y which are used to reduce the system (3.4) to the follo—

wing form:
3\
dv _ o . do _ .8y _ o . dx _ o .
E;“"eflv d_,;—ef2’ 'E—ef4y (—l;—ef3'
dc__g 2 - . ‘
- (3.8)

dy l
E‘-,‘f“’(c'v'e’y)."‘%{'fsqwqc'*' Ql(wc'*' qwc)-

- szq\vw} =‘w + ev,

where
1 | ¢1=qvf1+qef2+q,,f4;

It is easy to show that the value of A does not depend on the
variable y. The system (3.8) is a system of six first—order
equations with respect to six unknown variables of which the
first five change slowly. Therefore, we once more obtain the
problem which was considered above.

We no longer need to write the standard change of the

variables. We only confine ourselves to writing the system of
' -1l :
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equations which should be numerically inteprated if we deal o
exclusively with the equations of a first approximation

: . 2%
d . pyis :
d—f’; = 3{-g sin & — e ({ Cx[UJUJ_Q(C; ¥, Uy 1, 0)]dy) ('3:91)

-d—9-=e{- chse pvs

f cylvmale,v,vu0ldvl (3.9, !

T

de. v

dx ‘

a—;: eV cos® ) (3-93)
dy _ . .
1 =" eUsin @ (3.9,)

Se=- 2—7:& of gydv - -2--— S [‘I’l“’q\vw -3, qw]d\y (3.95)
; dy _ -

Consequently, we again face the problem of integration of a
system of four differential equations (3.9,), (3.9,), (3.9,) and
(3.95) after which the equations (3.9,) and (3.9;) are integrated
in quadratures,

IV, Resonance Problems in the Theory of Satellites

Interesting resonance problems arise from the study of the
satellite travel relative to the centre of mass. If the orbitis
sufficiently high it can be assumed that motion with respect to
the centre of mass does not effect the motion of the centre of
mass itself, Moreover, to simplify our calculations, we shall
exclude from consideration the perturbing factors and assume
: that the centre of gravity moves along an ellipse whose eccen—
! ~ tricity is e. V.V.Beletsky [4] has shown that the plane motion
of the satellite is descnbed in this case by the following 1
equanon :

s p—

-]12-
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. : 2 “
(1+ecos G)Q-g-—‘Zesin'ed—s+3a2.sin8 =4esino (4.1 .E
: de » de )
Here a = ‘4—;7(" ; B — moment of inertia relative to that axis of the :

satellite which always remains perpendicular to the orbit plane; i
A and C — moments of inertia relative to the axes in the plans of |
the orbit and 4 > C and a < 1; 5 = 2v, v < angle between the f
radius vector of the centre of inertia and the axis of inertia with
respect to which the moment equals C3; e — angular distance of
the radius vector from the orbit perigee.

If the orbit is circular (e = 0) the equation (4.1) is integrated
in elliptic functions, Of the two positions of equilibrium the po—
-sition 8 = v = 0 is stable.

If e#0 the asymptotic methods can be used to investigate b
two cases: 1) e <<1 — the orbit is nearly circular; 2) a <<1 -
the form of the satellite is nearly axisymmetric. These cases
have been examined by F,L.Chernousko.

1) Let e<<1], then the equation (4.1) can be rewritten in the
following form: i

P 5" +3a2sin 6 = eldsin 0 +3a%cos6sins +2sin 08’ ) +0(e2). (4.2)
The solution of the :equation (4.2) when ¢ =0 is denoted

8=q(c,) 8 =w(clg,

where ¢ = 9+90. {

We shall employ the way of consideration used in the prece—
ding section to reduce the equation (4.2) to the following system
of differential first—order equations:

c'=e2,(6,68,¢) 8 =w(c)~1+ed,(6,8,c) (4.3)
¢* will be the root of the equation
w(c®)=1.

If ¢ - ¢® = 0(e) the right sides of the system (4.3) can be in— ]
vestigated by the methods used in the preceding sections (for
this purpose it will be-sufficient, for example, to add the "fast"
unknown value % = 1); we shall then come to the following

-l3 e
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system of equations contalmng no 6; : i

4

¢ = eq;li(eo c).; 6p = w‘(c) -1+e3,(8pc) (4.4)

From the equations ¢’ = e; = 0 we find stationary resonance
solutions, If we investigate the stability by the usual methods
we shall obtain the classical result: that position of the satel—
lite equilibrium will be stable at which in perigee the axis of
inertia C is pointed along the radius vector,

2) When a<<1], F. L. Chernousko specially selected the va -
riables to reduce the problem to the investigation of the equation
which after the averaging operation took the form

oy

2
d 20 1 352p () sin2a = 0
dr?
where F(e) is a monotonically decreasing function and F(e) >0
if e >eg ~0.68 and F(e) <0 ate<e,.

It follows from this that when eccentricities are large there
takes place a replacement of stable and unstable equilibrium
nositions and that position becomes stable at which the *axis
of minimal moment of inertia of the satellite is perpendicular to
! the radius vector in the perigee,

et et A ot S e s M

Conclusion

‘ ‘ The following should be pointed out in conclusion:

1) In our examination of the general scheme of the "separa—

tion of motions" we confined ourselves in all problem to const—
ructing a first approximation. We can indicate a number of prob—
lems where this approéch will be clearly inadequate. However,
the procedure oulined in this paper can also be used for a more
i detailed analysis.
i 2) The above problems have been specmlly selected to show
| the versatile character of the problems of satellite dynamics for
: which the methods of asymptotxc integration can serve the basis
for research.

From the studies of the works of de Sparre’a, Captain of
French Artillery (late 19th century), down to the well-known

) - 14—

s
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. S 1

N research of D.A.Ventcel and V.S.Pugachev (thirties of the 20th

~ century), specialists in exterior ballistics concentrated on deve~
loping the methods of asymptotic integration. I believe that it is
precisely these methods that served the rational basis of success
attained in the solution of the general problem of exterior bal—
listics. I am convinced that this can in full measure be applied
also to the dynamics of satellites, ‘

Thereis a broad class of problems whose destiny will depend

on the progress in the application of asymptotic methods. The
problems that arise in the dynamics of satellites are undoub—
tedly far more complicated than the problems of ballistics but
the methods of research become now more effective,
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V.ASALYCHEV
(The VESK ACADEMY Ol GCIENCLS) MOUCOW, USSR)

| INVESIIGATTION OF T LYNAMICS OF GRAVITATIONAL
STABYLIZATICN SYSTEX
(Abstract)

The papexr is devoted to sheoretical investigation
of the dynamica of the satellite gravitational
stabilization system. The principle scheme of the
syslem under investigation is desoribed in (1).

In this scheme a second body called & stabilizer
is connected to the satellite body by means of a
spherical gimbal. The position of the stabilizer
relative to the satellite is fixed by springs. The
relative mobility of the satellite and stabilizer
makes 1t possible tb introduce linear damping in
the sysiew, for instance, by means of a magnetic
damper. g

Equations of motion of the satellite-stabilizer
~ : system are derived in assumption that motion takes
place in the central Newtonian gravitational field

in a medium without resistence. Tho satellite orbit

ig an ellipse fixed in absolute apace, ‘Thus, the

gtuay does not take jinto account the wutuel dependence
of tha system's onward and rotational motioms, and

the influence of perturbing factors is ignored.

The work consists of six parvagraphs. In 81
expressions are ébtained for kinetlc energy and force
function of the satellite-otabilizer system without
any lindtations on inertia characteristics of the |
satellite and stabilizer. In §2 equations of motion of
the system are derived linearized in the vicinity of
the stuble equilibrium position. These equations are
reduced to a dimensionless form for the concrete

" stebilizer design, ‘
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In §3 Lyapunov's function is constructed by
means of the gen2ralized energy integral, and
necessery eand suflicient conditions 02 the asymptotic
ctability of the equilibrium position of the satellibe-
stabilizer system in a circular orbit are obtained,

In #4 %She intluence of the orbit ellipticity on the
gystem behaviour is analyzsd. Formulas for amplitudes
of the satellite and stabilizer forced oscillations
a o derived with an accuracy to the square of
ecceutricity.

The problem of the rapidity of attenuation of
aatural cscillations of the satellite-stabilizer system
ig considered in §5. As a criterion of the pinimum
duration ofvbho'bransition process a condition is polected
of the maximum of the real part (which is the least in
modulus) of the roots of the system characteristic
aguation, In §6 an example is given of the attenua-
tion of the system natural oscillations in circular
and elliptical oxrbltvs. | |
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D16 OKHOTSTMSRY, VA BAKYCHEV
(Phe Ubuk Academy of Sciences, Moscow, UBER).

R AVTT T IONAL STABILIUATION LYsTHN OF ALTIXICIAL
SATLLLITES

: Abstract,

& purely passive scheme of a gravitatiomal
stabiiizstion systexn of artificial. satellites is
sugpested which uses the properties of the Karth's
gravitational field. The main dynamic characteristics
cf this system are briefly indicated,

The realization of scientific investigations in
intcrplanctary space by means of artificial satellites
often regulves precise three-axis or one-axis orientation
of & sutellite with respect to the Larth for a long .
period of time, The use of active'systems of orientation ‘
ot connidersblo lifetime of the satellite leads to a
numbey of diificultiQS'connected with the luarge energy
o1 propellant consumption, weight and complexity of these
syateus, o ,

It is possiblc‘to create passive systems of stabill-
zation on the basis of the use of magnetic and gravita-
tional fields, effects of 1light pressure, the drag of

tbe atmosphere, etc. The importaat positive property of
passive systome cousista‘in the fact thsat these systeas -
can function for s long period of time without ensrgy

or propellant consumptlon. The most esgentisl drawback
of passive systems is the relatively smoll magnitude of
controlling momentas. ‘

In the present paper a possibllity is considered of
the sabtellite stabilization with respect to a tarihedron

Pormed by the radius-vector, trensversal and binormal to
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the orbit. "his thrihedron will be called the oxbital
coordinate system. The principle of stabilization is
based on the use of the property of the Newtonian
gravitationsl tield to definitely orient a body moving
in it. This body has unequal moments of inertia rola-
tive to its main central axes.

If a satellite moves in the canrrul Hewtonlan
field oif forces along the circular orbit, there axe
four stable positions of relative equilibriuam cor-
responding to the coincidence of the major axie of tne
gatellive inertia ellipsoid with radius~vector and of
the minor aaig with the binormal to the orbit (1,2)
(#i3.17+ The stable equilibrium positions turn to
sach obber abt the satellite turn by 180° around the
radius-vector and the binormal to the orbit. In an
ahsolute coordinate system the sstellite rotation
around the binormal to the orbit with an angular
valocity eQual to the angular velocity of the satellite
mass centre motion ia orbit éorresponds to the relative

~equilibrium position,

1n the absence of inner energy dissipation the
value of the amplitudes of the satellite small
oscillaticns about tne equilibrium position does not
vary with tiwe. The accuracy of stabilization is determined
by tie initial values of argles and of angular veolo-
citicy of the satellite. The introduction of dissipative
forecee to the system trensforms the satellite stable
relative equilibrium positions to tue asymptotically
stable ones., Then the amplitudes of natural oscillations
caused by the inibtial values of angles and anguler
velocitiésqtond to zero, '

Thac simpleat scbeme which mokes it possible to
introduce dissipative forces and to nstabilize omcilla~
tions of an artificisl satellite with respect to tho
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orbital coordinate system in a circular orbit is
i1lustreted in Fig.1. A ceatral spherical cavity
filled with viscous £luid is inside the gravitationally
gtable satcllite., The satellite occcilatory motion
1sads to replacement of viscous fluid relative to the
satellite body and to energy dissipation. The sphore
in Fig.1 can be replaced by a cavity formed by two
spherical envelopes. Thore ig optimum viscoslity
ensuring the maximum velocity of dissipation of tae
ogcillations energy for a given thickness of the
loyer and the density of viscous fluid onoclosed
between spherical envelopes.

The main drawback of the scheme of damping of
the satellite oscillations by means of viscous f£luid
is that large quantity of fluid is required for
relativel, rapid energy disaipation, since it turns
out that in the optimum case of damping the moment
of inertia of fluid should be comparable in magnitude
with the satellite maximum monent of inertia. The '

- ei'fectiveness of this scheme is somewhab increased of
fluid is placed in an enclosed toroidal volume
situated outside the satellite,

In 1956 D.&.Oknotsimsky suggested a more effective
schene of atabilization and damping., This scheme is
presented in Fig.2. By means of a spherical gimbal P
s sccond body called a stabilizer is connected to the
satellite body. The stebiliaer represents two bars
equal in length rlgidly connocted with each other
with equal weights at tho ends, The coordinate systems ‘
01x1y‘zq " and °°x2)2”2 ere the main central '
tarihedrons connected with the satellite and the
stabilizer, raspactively. The position of the stabili-
zor velative tu the satellite body 1s fixed by centerins
-sprlngs. ‘
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Phae ciabilizer parameters (the length of bars,
welght, the angle betweon bars) are choson with a
view o enaurzng the gravitational stability of the
sate]lxttuqtubulizer systonm at the rigid Zixation
of Lhe stabllizer relative to the satelllte, In the
atable cquilibLrium position of the sgtellite-ctabili-
zor systos the bars are located in the orbital plane,

0, 1H 05245 quhl( 0y, and is parallel to the
tangent to the circular orbit,; 04%4 i O %50

Junrigld fixation ot the mutucl position of the
cabellits and stabilizer by moans of elastic counec-
tion is realized with a view to introducing linear
damping membors to the system using the relative
nobility of the sebellite and stabilizer. Practical
realization of linoar damping in the satellite~
stabilizay system is_p0991blc, for instence, by eans
of a magentic damper whose action i3 based on the
ane of Foucault curreuts or a liquid damper. Such
daupers ave widely used in coastruction of instruments,

The proposed schemc maxes 1t possible to
cnaure the satallite stabilization relative to the
orbital coordinebe cystom at any inertia characteris-
tics of the satellite. The shape of the satellite is
of uo isportance in a medium without resistonce.
Motion of the systiem igs determined by irertia
characterintics of the satellite eud stabiliuer and
by tine coordinates of a spherical giwbul with res-
pect to the thrihcd;ous 04%X,¥4%4 and 02x2y2z2.

Moments of inertia of the stebilizcr are pro-
porbional to the square of the length of the bars
and the maximum size of the bars is determined only
by the reguirements of the design rigidity. There-
fore the ratio betwsen the moments of inertia of
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the satellite and stabiliser necessaxry for the
- gatisfactory transition process is easily cnsured
by means of small masse3 ab the end of bars abt the
expense of increasing their lengthc. From the design
point of view folding or telecopic bvare (or bars from
metallie girips) which are rolled up ucder the action
of resilisnce forecs appear to be convenient.

%e can abotain from introducing elastlc con-
nectlon between thé_satellite snd stabilizer if the
sakellite is gravitationally stable without the
stabiliZor, and the gimbal is located on the major
central axis corresponding to the satellite moment
of inertia average in megnitude. In this cage the
role of fixing elastic connections iz played by
gravitutional moments.

The scheme of the satellite-stabilizer system
in Fig.2 io the most simple und at the same time the
most general since it solves the stabilization
problen at any parameters of the satellite. Consi-
deration of a more complex forms of the stabilizer
does not add anything new to this scheme.

Up till now we wspoke about motion of the satellite-
gstabilizer system in a circular orbit in a mediunm
without resistance. On an elliptic orbit forced
eccentricity cscilationa caused by npnuniformity
of rotation of the orbital coordinate systeas ale added
to matural oscillations decreasing in aumplitude.
wecenbriclty oscillailonus beke place in the orbital
plane. o

The amplitude of eccentricity oscillations is
proportional to the value of the orbit eccontricity
and depends on inertla characteristics of the satellite
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and stabilizer, Thé‘frequency of eccentricity oscillations
- colncides with the frequcuey of the revolution of the
centre of wass of the sutellitc-stabilizor system in
oerbit ond, consequently, the angle of rhe satecllite
“deviation relative to the orbital coordinate systonm
cheuges very slowly in time, Eccentricity oscillations
can be casily caleulated and can be takes into
. account at proceossing the vesults of experimeunts
corricd out at the sgtellite, '

At wotion of the satellites in orbits with
‘helghts lower then 600 km it is necessary to take
into account the influence of tle atmosphere which
in the main is reduced to forces of resistance spplicd
et the cantres of pressure of the satcllite and
atabilizer and aimed sgainst the velocity of the
centre of mans of the satellite~stabilizer system,

The gravitationally stable scheme of the satellite-
atebilizer system will be at the same time aerodynamical-
1y ﬁi”ble at the unchangeable equilibrium position of the
satollite and stabilizer zrelative to the orbital
coordunutn systen ;f the following conditions are
sabisfleds

1) Axes o, P and 0, P (Fig.2) arc axes of geonet-
ricsl symuetry of the satellxte and stabilizer,

2) Neither sutellite, nor stabilizer should be
gerodynanically wistable. :

3) The stabilizeér aerodgnamic draking (the

- resistance force Lo mass ratio) is not higher than the
setellite aerodyaamic braking, i.e. the gatellite
fulfills the role of a parachute with rospect to the
stabilizcr,
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The formulaied conditions are sufficient,

‘Taking into acccunt grovitational stability of the
satellite-stabilizer system and the exristence of
olastic connection thesc condltions can be wecakened.

In a circulsar orbit the atmospheric resistauce
leads bto tho increcase of ifrequencies of netural
oscillations of the satellite-stabillzer systen. The

- aecond ~1fect of tho action of the atmoshpheriec drag
on tho syatem oscillations is coanected with the
carcying aulong of the atmosphere by the rotating
Larth and depends on the orbital inclination and
heignt and the position of the ceantres of pressure
of the satellite and stabilizer,

Toe maximum umplitude of forced oscillations due
to %whe rotation of the atmosphere does wot exceed
several degroes and decreases with height, as
calculations have shown, The frequency of oucillations
cuincides with the‘fréquency of the rovolution of the

.syucem centre of mass in the orbit. The atmosphere
rotation doec not influence the oscillations in the
orbitoel plane and oifects only the systeuw oscillations
whicn drives it out of the orbital plane.

In an elliptic orbit the influence of the Harth's
atmosphere on motion of the satellite-stablilizer aystem
is wmore complicated whicn is connected with the
variation of the atmosphere density with height.

With sufficiently good knowledge of uerodynamic
rorces ncting on the satellite and stabilizer the
oécillations causzaed by the action of the atmosphere
can be calculated and taken into account,

It should he pbiﬁted.out that iu principle it is
possible to exciude the iafluence of the atmospheric
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reslabance on the oscillations of the satellite-
stobilizer system. For this purpose it is sufficient
to make the satellito and stnbilizer serodynamically
neutral anc. to ensure the equality of values of
their aerodynamic braking. vhen these conditions

" ore satisfied the atmospheric resistance affeots
only the onward motion of the satellite-stsbilizar
syatem and does not influence the systom oscillatory
metion, .

The demand to stabilize the satellite in a
prescribed stable equilibrium posivion imposes
limitations on the initial.conditions of the satellito
after ite sepaiation from the last stage of the '
rocket carrier. Tne volues of angles and angular
velocitics of the satcllite should be such that in
the prooess of quiebing,the transition from one
‘8teblo equilibriun position to the other will be
excluded, If tuis condition is not fulfilled,

‘tmen the gravitational stabilization system should be
introduced into the operating renge by means of

the active system of gquieting which decreases the
initisl emplitudes to the necessary value. The
decrocse ol the initial engular velocity of the
systen is also possible at the expense of

jnercasing its moments of inkertta in the process

of openiig of the stabilizer bars which wore located
pefore the placing of the satellite to the orbit in
the folding state.-

The propoced sravibatlonal gtabilization system
can functzon Tor a 1long peviod of time and does not
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require n the energy consumption for stabilizution,
The aceuracy of the satellite stabilization is
Getermined oaly by ths accuracy of the manufacturc
of the nutellite-stabilizer system and in principle
can be high without ony limitutions. The weignt of
the cicbilizor onsuring the optimum traasition
process docs not exceed several per cent of the
saetellitc weight if the length ¢f the bar is

ogual %o the-sateilite double meximur lincar size.
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Fig.2. The scheme of the satellite-
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